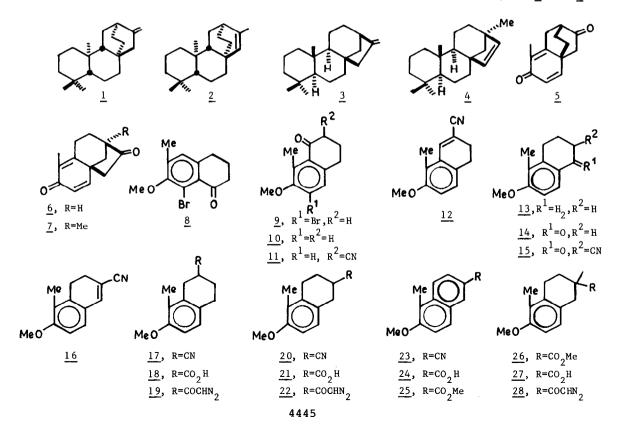
SYNTHESIS OF BRIDGED CARBOCYCLIC SYSTEMS RELATED TO DITERPENES INVOLVING INTRAMOLECULAR CYCLISATION OF DIAZOMETHYL KETONES


Basudeb Basu and Debabrata Mukherjee*

Department of Organic Chemistry

Indian Association for the Cultivation of Science, Calcutta-700032, India

Summary: The tricyclic dienediones 5,6 and 7 have been synthesised for entry into the ring systems of the tetracyclic diterpenes atisirene (1), phyllocladene (3) and hibaene (4) respectively.

Atisirene and isoatisirene are tetracyclic diterpenes isolated a from the wood of Exythroxylon monogynum Roxb. The structure and absolute stereochemistry of (-)-atisirene (1) and (-)-isoatisirene (2) have been unequivocally established through correlation b with compounds of known absolute stereochemistry. For synthetic entry into the bridged tetracyclic framework of the diterpenes 1 and 2, we have synthesised the tricyclic dienone 5 involving acid-induced intramolecular cyclisation of the diazomethyl ketone 19. Selective reduction of the disubstituted double bond of 5 followed by Robinson annelation reaction of the resulting enone with ethyl vinyl ketone is expected to lead to the desired objective. From a common bicyclic starting material 10 we have also synthesised the dienones 6 and 7 which incorporate rings B/C/D of the tetracyclic diterpenes phyllocladene (3) and hibaene (4) respectively. The dienones 6 and 7 possess the potentiality of serving as useful intermediates for the synthesis of the diterpenes 3 4 and 4 5 .

Bromination 6 of γ -(3-methyl-4-methoxyphenyl) but yric acid in AcOH with 1 mole of Br, in the presence of catalytic amount of iron powder at 50° for 24 hr afforded a mixture of isomeric bromo-acids (78%) which without separation was directly cyclised with PPA. The resulting neutral product was chromatographed over alumina to furnish the bromo-ketones 8, m.p. 110° (lit. m.p. 110°) and $\underline{9}$, m.p. 61° (lit. m.p. $61-62^{\circ}$) in 40% and 48% yields respectively. Reductive debromination (H₂, 10% Pd-C) of the bromo-ketone $\underline{9}$ in the presence of Et₃N afforded the tetralone $\underline{10}$ in 95% yield, m.p. 46-47° (lit. m.p. 46-47°). Reduction of the ketone 10 with NaBH, followed by hydrogenolysis (H_2 , 10% Pd-C) of the crude product in AcOH furnished the compound $\frac{13}{12}$ which on oxidation with CrO₃ yielded the tetralone $\underline{14}$ in 70% overall yield, m.p.114° (lit. $\overline{}^{7}$ m.p. 112-113°). The ketones $\underline{10}$ and 14 were converted into the corresponding β -ketonitriles 11 (78%), m.p. 153-154° and 15 (81%), m.p. $131-132^{\circ}$ using the isoxazole procedure of Johnson et al. Reduction of 11 and 15 with NaBH, and subsequent dehydration of the crude hydroxynitriles with $KHSO_{\Delta}$ at 170° furnished the unsaturated nitriles $\underline{12}$, m.p. 80° and $\underline{16}$, m.p. $68-69^{\circ}$ in 82% and 84% yields respectively. Reduction of $\underline{12}$ and 16 with Mg and MeOH afforded the saturated nitriles 17 (85%), m.p. 88-89° and 20 (85%), m.p. 104- 105° which on subsequent base hydrolysis yielded the corresponding acids 18 (88%), m.p.179-180° and $\underline{21}$ (90%), m.p. 184°. The diazoketone $\underline{19}$, prepared from the acid chloride of $\underline{18}$ with CH₂N₂, was treated with trifluoroacetic acid (TFA) in CH_2Cl_2 at -20° to afford the dienone $\underline{5}$ (45%), m.p. 128- 129° ; IR (KBr): 1720, 1660, 1632, 1606 cm⁻¹; 2 1 H-NMR (CDC1₃): δ 1.84 (s,3H), 1.47-2.95 (m,9H), 6.23, 6.67 (AB, 2H, J=10 Hz). Similar treatment of the diazoketone $\underline{22}$ furnished the dienone $\underline{6}$ (58%), m.p. $149-150^{\circ}$; IR (KBr): 1735, 1658, 1624, 1606 cm⁻¹; ¹H-NMR (CDCl₃): δ 1.94 (s,3H), 1.55-3.20 (m, 9H), 6.32, 6.76 $(AB_{a}, 2H, J=10 Hz)$.

For the synthesis of the dienone $\underline{7}$, the unsaturated nitrile $\underline{16}$ was subjected to dehydrogenation with 10% Pd-C in refluxing p-cymene. The naphthonitrile $\underline{23}$ (81%) thus obtained, m.p. 105-106° was converted into the naphthoic ester $\underline{25}$, m.p. $112-113^\circ$ via the acid $\underline{24}$ in 84% overall yield. Reductive methylation $\underline{9}$ of $\underline{25}$ in anhydrous ammonia followed by catalytic hydrogenation of the crude product furnished the ester $\underline{26}$ (75%), $\underline{1}$ H-NMR (CCl₄): δ 1.20 (s,3H), 2.03 (s,3H), 1.53-3.32 (m,6H), 3.60 (s,3H), 3.75 (s,3H), 6.53, 6.76 (AB_q,2H,J=8.5 Hz). Base hydrolysis of $\underline{26}$ yielded the acid $\underline{27}$ (87%), m.p. $164-165^\circ$ which was converted into the corresponding diazomethyl ketone $\underline{28}$. Treatment of $\underline{28}$ with TFA in CH₂Cl₂ at -20° furnished the dienone $\underline{7}$, m.p. 139° in 65% yield; IR (KBr): 1733, 1659, 1629, 1608 cm⁻¹; $\underline{1}$ H-NMR (CDCl₃): δ 1.15 (s,3H), 1.90 (s,3H), 1.41-3.18 (m,8H), 6.28, 6.68 (AB_q,2H,J=10 Hz). Further elaborations of the dienones $\underline{5}$ - $\underline{7}$ are in progress.

References:

- 1 (a) A.H. Kapadi, R. Soman, R.R. Sobti and Sukh Dev, Indian J. Chem., 22B, 964 (1983) and references therein; (b) R. Soman, A.H. Kapadi, R.R. Sobti and Sukh Dev, ibid., 22B, 989 (1983) and references therein.
- R. Vitali, G. Caccia and R. Gardi, J. Org. Chem., 37, 3745 (1972).
- D. Mukherjee, S.K. Mukhopadhyay, K.K. Mahalanabis, A. Dasgupta and P.C. Dutta, J. Chem. Soc. Perkin 1, 2083 (1973).
- 4 A.S. Kende and P.J. Sanfilippo, Synth. Commun., 13, 715 (1983) and references therein.
- 5 R.E. Ireland and L.N. Mander, Tetrahedron Letters, 2627 (1965).
- 6 A. Chatterjee and D. Banerjee, J. Chem. Soc. (C), 1859 (1971).
- 7 R.H. Martin and R. Robinson, J. Chem. Soc., 491 (1943).
- 8 W.S. Johnson, J.W. Peterson and C.D. Gutsche, J. Am. Chem. Soc., <u>69</u>, 2942 (1947).
- 9 S. Bhattacharyya, B. Basu and D. Mukherjee, Tetrahedron, 39, 4221 (1983).